Exercice 1

- 1. On a $\varphi(x) = \frac{x}{2} + \left| \frac{x}{2} \right|$
- 2. Plus généralement, soit γ une fonction sur I = [-1, 1] vérifiant $\gamma(0) = 0$ et pour laquelle il existe une constante positive k telle que $|\gamma(x)| \le k|x|$ pour tout x de I.

La fonction δ définie par $\delta(x) = |kx + \gamma(x)| - |kx|$ coïncide avec γ pour $x \ge 0$ et avec $-\gamma$ pour $x \le 0$.

On obtient donc une solution en prenant $\gamma(x) = \frac{t_2 - t_1}{2}(x)$ puis $f(x) = \frac{t_2 + t_1}{2}(x) + \delta(x)$.

L'existence de k résulte du fait que $(t_2 - t_1)(x)$ est de la forme $Ax^2 + Bx$. k = |A| + |B| convient.

Exercice 2

- 1. (a) Dans le cas contraire, on aurait $9! = 70 \times 72 \times 72 \leqslant 71^3$, ce qui n'est pas avéré.
 - (b) Par exemple:

1	8	9
2	5	7
3	4	6

2. On raisonne par l'absurde. Soit M le plus grand produit des lignes et des colonnes du carré. On sait que $M \ge 72$, et l'on peut supposer que M est le produit des éléments de la première ligne.

L'ensemble des produits strictement inférieurs à 90 que l'on peut former avec trois entiers distincts compris entre 1 et 9 est :

{6, 8, 10, 12, 14, 15, 16, 18, 20, 21, 24, 27, 28, 30, 32, 35, 36, 40, 42, 45, 48, 54, 56, 60, 63, 64, 70, 72, 80, 84}.

Supposons M=84. Aucune autre ligne n'a un produit multiple de 7, mais un produit de ligne est multiple de 5. Les produits de lignes sont donc à l'ordre près (84,80,54) ou (84,60,72).

À l'ordre près des termes sur chaque ligne, on n'a que les trois cas :

			. 0						
3	4	7		3	4	7	2	6	7
2	5	8		2	5	6	3	4	5
1	6	9		1	8	9	1	8	9

Supposons M=80. Le produit de ligne multiple de 7 est nécessairement 63, et, toujours à l'ordre près, il n'y a qu'un cas :

2	5	8
1	7	9
3	4	6

Enfin pour M = 72, les produits de lignes sont 72, 70, 72 et il n'y a encore qu'un cas :

1	8	9	
2	5	7	
3	4	6	

On constate que dans tous les cas les nombres 1 et 9 sont sur une même ligne, donc ne peuvent pas se trouver dans une même colonne.

L'exemple initial montre que la constante 90 est la plus grande possible.

Problème

Partie I : Géométrie

- 1. On a $a^2 = b^2 + c^2$. Les médianes issues de A et B ont, dans un repère orthonormal d'axes (AB) et (AC), pour pentes respectives $\sqrt{2}$ et $-\frac{\sqrt{2}}{2}$.
- 2. (a) Cercle de diamètre [AB], privé des points \overline{A} et B.
 - (b) Homothétie h(O, 3), O étant le milieu de AB.
 - (c) Soit φ la mesure de l'angle en O dans le triangle AOC. La formule d'Euclide-Al Kaschi donne

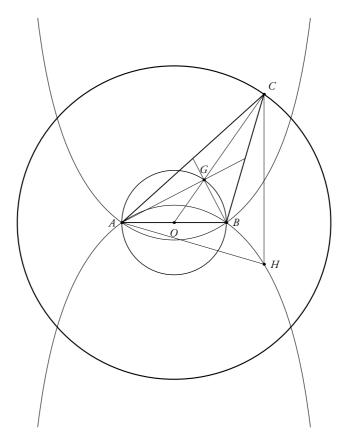
$$b^2 = c^2 \left(\frac{5}{2} - \frac{3}{2} \cos \varphi \right),$$

fonction dérivable de φ , à dérivée strictement positive, qui prend toutes les valeurs de l'intervalle]1, 4[lorsque φ décrit]0, π [. L'ensemble demandé est donc]1, 2[.

(d) Si l'on note $\theta = (\overrightarrow{i}, \overrightarrow{OC})$, H a pour abscisse $3 \cos \theta$ et se trouve sur la hauteur issue de A, d'équation $(3 \cos \theta - 1)(x + 1) + 3 \sin \theta y = 0$, d'où $f(x) = \frac{1 - x^2}{\sqrt{9 - x^2}}$.

La dérivée de
$$x \mapsto \frac{1-x^2}{\sqrt{9-x^2}}$$
 au point x est $\frac{x(x^2-17)}{(9-x^2)^{\frac{3}{2}}}$, du signe de $-x$ sur l'intervalle d'étude] -3 , 3[, d'où le tracé.

Les droites d'équations x = 3 et x = -3, asymptotes verticales, n'ont pas été représentées.



- 3. (a) Si B' est le milieu de [AC], G décrit le cercle de diamètre B'A privé des points A et B', et C s'en déduit dans h(B',3), et décrit un cercle de rayon $\frac{3b}{2}$ et de centre O tel que $\overrightarrow{AO} = -\frac{1}{4}\overrightarrow{AC}$.
 - (b) Soit φ la mesure de l'angle en O dans le triangle AOC. La formule d'Euclide-Al Kaschi donne

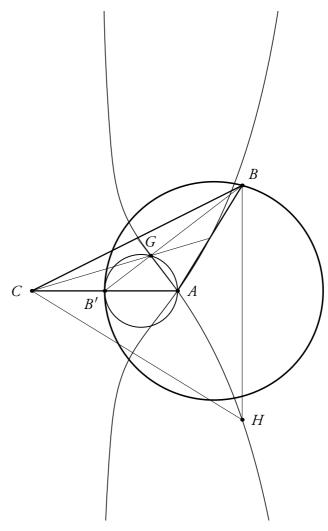
$$a^2 = b^2 \left(\frac{17}{8} - \frac{15}{8} \cos \varphi \right),$$

fonction dérivable de φ , à dérivée strictement positive, qui prend toutes les valeurs de l'intervalle $\begin{bmatrix} \frac{1}{4}, 4 \end{bmatrix}$ lorsque φ décrit $]0, \pi[$. L'ensemble demandé est donc]1/2, 2[.

- (c) Le cercle de rayon minimum passant par A et B est le cercle de diamètre [AB], qui rencontre Γ' en deux points dont la projection K sur (AB) vérifie $\overrightarrow{B'K} = \frac{1}{3}\overrightarrow{B'A}$.
- (d) Si l'on note $\theta = (\overrightarrow{i}, \overrightarrow{OB})$, H a pour abscisse $3\cos\theta$ et se trouve sur la hauteur issue de C, d'équation $(3\cos\theta + 1)(x + 5) + 3\sin\theta y = 0$, d'où les équations cartésiennes $y = \pm \frac{(x+5)(x+1)}{\sqrt{9-x^2}}$.

La dérivée de $x \mapsto \frac{(x+5)(x+1)}{\sqrt{9-x^2}}$ au point x est $\frac{-x^3+23x+54}{(9-x^2)^{\frac{3}{2}}}$; le numérateur ne

s'annule que pour une valeur de x, appartenant à l'intervalle]5, 6[, et la dérivée est par conséquent positive sur l'intervalle d'étude]-3, 3[, d'où le tracé. Cette fois encore, on n'a pas représenté les asymptotes verticales.



- 4. (a) On peut utiliser la formule de la médiane ou un calcul direct : l'orthogonalité des médianes se traduit par la relation $(2\overrightarrow{CA} \overrightarrow{CB}) \cdot (2\overrightarrow{CB} \overrightarrow{CA}) = 0$. Il suffit de développer et d'utiliser la relation d'Euclide-Al Kashi.
 - (b) La relation $a^2 + b^2 = 5c^2$ entraı̂ne clairement $c^2 < (a+b)^2$. En revanche la relation $c^2 > (a-b)^2$ n'est vérifiée que si $\frac{b}{a}$ rend strictement négatif le trinôme $x \mapsto 2x^2 5x + 2$, c'est à dire pour $\frac{1}{2} < \frac{b}{a} < 2$. On retrouve le résultat du 3.(b).

Partie II: Arithmétique

A. Deux familles de triangles

- 1. (a) Il est clair que tout diviseur premier commun à a (resp. b) et c diviserait également b (resp. a).
 - Un diviseur premier, autre que 5, commun à a et b, diviserait c.
 - Enfin si 5 divisait a et b sans diviser c, alors le premier membre de la relation (\star) serait divisible par 25, et le second membre seulement par 5, ce qui est absurde.
 - (b) Si *a* et *b* étaient tous deux pairs, il devrait en être de même pour *c*, ce qui est contradictoire.

Si a et b étaient tous deux impairs, alors le premier membre de la relation (\star) serait congru à 2 modulo 4, ce qui est impossible pour le second membre.

(c) La relation (\star) entraı̂ne $a^2 + b^2 + c^2 \equiv 0$ modulo 3 ce qui n'est possible que si a, b et c sont multiples de 3 – ce qui est exclu – ou premiers avec 3.

Les entiers u et v étant de parités différentes, $u^2 - uv - v^2$ et $u^2 + uv - v^2$ sont impairs, donc ni a ni b ne peuvent être multiples de 4.

Enfin il résulte de la question l'étude faite à la question précédente que ni a ni b ne peuvent être multiples de 5.

- (d) On a $b^2 4a^2 = (b + 2a)(b 2a)$. Il suffit de remarquer que, par exemple, les deux conditions $2a + b \equiv 0$ modulo 5 et $-a + 2b \equiv 0$ modulo 5 sont équivalentes (le produit de la première congruence par 3 donne la seconde, le produit de la seconde par 2 redonne la première).
 - Remarquons pour la suite qu'alors si de plus 0 < a < 2b et si b < 2a, alors le couple (α, β) associé à (a, b) est, dans chaque cas, un couple d'entiers strictement positifs.
- (e) Il résulte des calculs du 1.(d) que si α et β sont premiers entre eux, le PGCD de a et b est soit 1 soit 5, cette dernière éventualité étant réalisée si $2\alpha \beta \equiv 0$ modulo 5 dans le premier cas, ou si $2\alpha + \beta \equiv 0$ modulo 5 dans le deuxième cas.
- 2. Application directe de ce qui précède, compte tenu du 1.(d).
- 3. Il s'agit d'abord de vérifier les conditions a > 0, b > 0 et $\frac{1}{2} < \frac{b}{a} < 2$ (détermination de signes de trinômes).

La relation (1) demande que $\frac{u}{v} > 3$ et la relation (2) que $1 < \frac{u}{v} < 2$.

Il faut également que a et b ne soient pas des multiples de 5, ce qui conduit dans le cas de la relation (1) à éviter les couples (u, v) tels que 5 divise u - 3v, dans le cas de la relation (2) à éviter les couples (u, v) tels que 5 divise u - 2v.

- 4. On constate que si, par exemple, 2a b et 2a + b étaient tous deux multiples de 5, alors il en serait de même pour a et b.
- 5. On trouve 2 triangles de type 1 et 3 de type 2 :

$v \setminus u$	3	4	5	6
1		(22,31,17)		(58,59,37)
2	(22,19,13)			
3		(38,41,25)		
4			(58,71,41)	

B. Entiers de la forme $u^2 - uv - v^2$ et leurs diviseurs

1. En utilisant les relations $\omega^2 = \omega + 1$ et $\omega'^2 = \omega' + 1$ il vient :

$$(u^2 - uv - v^2)(u'^2 - u'v' - v'^2) = U^2 - UV - V^2$$

avec U = uu' + vv' et V = uv' + u'v - vv'.

Le trinôme $x^2 + 4x - 1$ se prête à des calculs analogues.

2. (a) Comme 4 et p sont premiers entre eux, la relation $u^2 - uv - v^2 \equiv 0$ modulo p équivaut à $4u^2 - 4uv - 4v^2 \equiv 0$ modulo p soit $(2u - v)^2 \equiv 5v^2$ modulo p ou bien encore $(u + 2v)^2 \equiv 5u^2$ modulo p.

(b) Comme u et v sont premiers entre eux, p est premier avec u ou avec v.

Supposons que ce soit avec v; comme p est strictement supérieur à 5, il ne divise pas $5v^2$, ni par conséquent 2u - v.

On a alors $(2u - v)^{2q} \equiv 5^q v^{2q}$ modulo p, ce qui, par le théorème de Fermat, s'écrit $5^q \equiv 1$ modulo p.

(c) Soient j et j' deux entiers distincts compris entre 1 et q. Comme p est premier avec 5, r_j et $r_{j'}$ sont distincts. Si $r_j + r_{j'} = p$, alors p divise j + j', ce qui est absurde car $3 \le j + j' \le p - 2$.

Il s'en suit que l'ensemble $\{f(1), f(2), \ldots, f(q)\}$ coïncide avec $\{1, 2, \ldots, q\}$, et qu'en multipliant les congruences $5j \equiv \varepsilon(j)f(j)$ modulo p on obtient :

$$5^q q! \equiv q! \, \varepsilon(1) \varepsilon(2) \cdots \varepsilon(q) \text{ modulo } p$$
,

ce qu'il fallait démontrer.

(d) Lorsque j varie de 1 à q, on a $\varepsilon(j)=1$ tant que 5j < p/2, puis $\varepsilon(j)=-1$ jusqu'à ce que 5j dépasse p, etc. On obtient le résultat demandé.

La fonction $x \mapsto \left\lfloor \frac{4x}{10} \right\rfloor - \left\lfloor \frac{3x}{10} \right\rfloor + \left\lfloor \frac{2x}{10} \right\rfloor - \left\lfloor \frac{x}{10} \right\rfloor$ augmente de 2 lorsque x augmente de 10. Il suffit donc d'étudier sa parité pour x égal à 1, 3, 7 et 9, ce qui est aisé.

- 3. (a) Vu au 2.
 - (b) On a $-u^2 + 4uv + v^2 = 5v^2 (u 2v)^2 = (v + 2u)^2 5u^2$. En utilisant un raisonnement identique à celui de la question précédente, on voit que b n'a que des facteurs premiers congrus à 1 ou 9 modulo 10.