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I list several proofs of the celebrated identity:

ζ(2) =

∞�

n=1

1

n2
=

π2

6
. (1)

As it is clear that

3

4
ζ(2) =

∞�

n=1

1

n2
−

∞�

m=1

1

(2m)2
=

∞�

r=0

1

(2r + 1)2
,

(1) is equivalent to
∞�

r=0

1

(2r + 1)2
=

π2

8
. (2)

Many of the proofs establish this latter identity first.

None of these proofs is original; most are well known, but some are not

as familiar as they might be. I shall try to assign credit the best I can, and

I would be grateful to anyone who could shed light on the origin of any of

these methods. I would like to thank Tony Lezard, José Carlos Santos and

Ralph Krause, who spotted errors in earlier versions, and Richard Carr for

pointing out an egregious solecism.

Proof 1: Note that

1

n2
=

� 1

0

� 1

0

x
n−1

y
n−1

dx dy
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and by the monotone convergence theorem we get

∞�

n=1

1

n2
=

� 1

0

� 1

0

� ∞�

n=1

(xy)
n−1

�
dx dy

=

� 1

0

� 1

0

dx dy

1− xy
.

We change variables in this by putting (u, v) = ((x+y)/2, (y−x)/2), so that

(x, y) = (u− v, u + v). Hence

ζ(2) = 2

� �

S

du dv

1− u2 + v2

where S is the square with vertices (0, 0), (1/2,−1/2), (1, 0) and (1/2, 1/2).

Exploiting the symmetry of the square we get

ζ(2) = 4

� 1/2

0

� u

0

dv du

1− u2 + v2
+ 4

� 1

1/2

� 1−u

0

dv du

1− u2 + v2

= 4

� 1/2

0

1√
1− u2

tan
−1

�
u√

1− u2

�
du

+4

� 1

1/2

1√
1− u2

tan
−1

�
1− u√
1− u2

�
du.

Now tan
−1

(u/(
√

1− u2)) = sin
−1

u, and if θ = tan
−1

((1 − u)/(
√

1− u2))

then tan
2 θ = (1 − u)/(1 + u) and sec

2 θ = 2/(1 + u). It follows that u =

2 cos
2 θ − 1 = cos 2θ and so θ =

1
2 cos

−1 u =
π
4 −

1
2 sin

−1
u. Hence

ζ(2) = 4

� 1/2

0

sin
−1

u√
1− u2

du + 4

� 1

1/2

1√
1− u2

�
π

4
− sin

−1
u

2

�
du

=
�
2(sin

−1
u)

2
�1/2

0
+

�
π sin

−1
u− (sin

−1
u)

2
�1

1/2

=
π2

18
+

π2

2
− π2

4
− π2

6
+

π2

36

=
π2

6

as required.

This is taken from an article in the Mathematical Intelligencer by Apostol

in 1983.

Proof 2: We start in a similar fashion to Proof 1, but we use (2). We get

∞�

r=0

1

(2r + 1)2
=

� 1

0

� 1

0

dx dy

1− x2y2
.
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We make the substitution

(u, v) =

�
tan

−1
x

�
1− y2

1− x2
, tan

−1
y

�
1− x2

1− y2

�

so that

(x, y) =

�
sin u

cos v
,
sin v

cos u

�
.

The Jacobian matrix is

∂(x, y)

∂(u, v)
=

����
cos u/ cos v sin u sin v/ cos

2 v

sin u sin v/ cos
2 u cos v/ cos u

����

= 1− sin
2
u sin

2
v

cos2 u cos2 v

= 1− x
2
y

2
.

Hence
3

4
ζ(2) =

� �

A

du dv

where

A = {(u, v) : u > 0, v > 0, u + v < π/2}
has area π2/8, and again we get ζ(2) = π2/6.

This is due to Calabi, Beukers and Kock.

Proof 3: We use the power series for the inverse sine function:

sin
−1

x =

∞�

n=0

1 · 3 · · · (2n− 1)

2 · 4 · · · (2n)

x2n+1

2n + 1

valid for |x| ≤ 1. Putting x = sin t we get

t =

∞�

n=0

1 · 3 · · · (2n− 1)

2 · 4 · · · 2n
sin

2n+1
t

2n + 1

for |t| ≤ π
2 . Integrating from 0 to

π
2 and using the formula

� π/2

0

sin
2n+1

x dx =
2 · 4 · · · (2n)

3 · 5 · · · (2n + 1)

gives us

π2

8
=

� π/2

0

t dt =

∞�

n=0

1

(2n + 1)2
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which is (2).

This comes from a note by Boo Rim Choe in the American Mathematical
Monthly in 1987.

Proof 4: We use the L2
-completeness of the trigonometric functions. Let

en(x) = exp(2πinx) where n ∈ Z. The en form a complete orthonormal set in

L2
[ 0, 1 ]. If we denote the inner product in L2

[ 0, 1 ] by � , �, then Parseval’s

formula states that

�f, f� =

∞�

n=−∞
|�f, en�|2

for all f ∈ L2
[ 0, 1 ]. We apply this to f(x) = x. We easily compute �f, f� =

1
3 ,

�f, e0� =
1
2 and �f, en� =

1
2πin for n �= 0. Hence Parseval gives us

1

3
=

1

4
+

�

n∈Z,n�=0

1

4π2n2

and so ζ(2) = π2/6.

Alternatively we can apply Parseval to g = χ[0,1/2]. We get �g, g� =
1
2 ,

�g, e0� =
1
2 and �g, en� = ((−1)

n − 1)/2πin for n �= 0. Hence Parseval gives

us

1

2
=

1

4
+ 2

∞�

r=0

1

π2(2r + 1)2

and using (2) we again get ζ(2) = π2/6.

This is a textbook proof, found in many books on Fourier analysis.

Proof 5: We use the fact that if f is continuous, of bounded variation on

[ 0, 1 ] and f(0) = f(1), then the Fourier series of f converges to f pointwise.

Applying this to f(x) = x(1− x) gives

x(1− x) =
1

6
−

∞�

n=1

cos 2πnx

π2n2
,

and putting x = 0 we get ζ(2) = π2/6. Alternatively putting x = 1/2 gives

π2

12
= −

∞�

n=1

(−1)
n

n2

which again is equivalent to ζ(2) = π2/6.

Another textbook proof.
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Proof 6: Consider the series

f(t) =

∞�

n=1

cos nt

n2
.

This is uniformly convergent on the real line. Now if � > 0, then for t ∈
[ �, 2π − � ] we have

N�

n=1

sin nt =

N�

n=1

eint − e−int

2i

=
eit − ei(N+1)t

2i(1− eit)
− e−it − e−i(N+1)t

2i(1− e−it)

=
eit − ei(N+1)t

2i(1− eit)
+

1− e−iNt

2i(1− eit)

and so this sum is bounded above in absolute value by

2

|1− eit| =
1

sin t/2
.

Hence these sums are uniformly bounded on [ �, 2π − � ] and by Dirichlet’s

test the sum
∞�

n=1

sin nt

n

is uniformly convergent on [ �, 2π − � ]. It follows that for t ∈ (0, 2π)

f
�
(t) = −

∞�

n=1

sin nt

n

= −Im

� ∞�

n=1

eint

n

�

= Im(log(1− e
it
))

= arg(1− e
it
)

=
t− π

2
.

By the fundamental theorem of calculus we have

f(π)− f(0) =

� π

0

t− π

2
dt = −π2

4
.

But f(0) = ζ(2) and f(π) =
�∞

n=1(−1)
n/n2

= −ζ(2)/2. Hence ζ(2) = π2/6.
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Alternatively we can put

D(z) =

∞�

n=1

zn

n2
,

the dilogarithm function. This is uniformly convergent on the closed unit

disc, and satisfies D�
(z) = −(log(1 − z))/z on the open unit disc. Note

that f(t) = Re D(e2πit
). We may now use arguments from complex variable

theory to justify the above formula for f �(t).

This is just the previous proof with the Fourier theory eliminated.

Proof 7: We use the infinite product

sin πx = πx

∞�

n=1

�
1− x2

n2

�

for the sine function. Comparing coefficients of x3
in the MacLaurin series of

sides immediately gives ζ(2) = π2/6. An essentially equivalent proof comes

from considering the coefficient of x in the formula

π cot πx =
1

x
+

∞�

n=1

2x

x2 − n2
.

The original proof of Euler!

Proof 8: We use the calculus of residues. Let f(z) = πz−2
cot πz. Then f

has poles at precisely the integers; the pole at zero has residue −π2/3, and

that at a non-zero integer n has residue 1/n2
. Let N be a natural number

and let CN be the square contour with vertices (±1 ± i)(N + 1/2). By the

calculus of residues

−π2

3
+ 2

N�

n=1

1

n2
=

1

2πi

�

CN

f(z) dz = IN

say. Now if πz = x + iy a straightforward calculation yields

| cot πz|2 =
cos

2 x + sinh
2
y

sin
2
x + sinh

2
y

.

It follows that if z lies on the vertical edges of Cn then

| cot πz|2 =
sinh

2
y

1 + sinh
2
y

< 1
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and if z lies on the horizontal edges of Cn

| cot πz|2 ≤ 1 + sinh
2
π(N + 1/2)

sinh
2
π(N + 1/2)

= coth
2
π(N + 1/2) ≤ coth

2
π/2.

Hence | cot πz| ≤ K = coth
π
2 on CN , and so |f(z)| ≤ πK/(N +1/2)

2
on CN .

This estimate shows that

|In| ≤
1

2π

πK

(N + 1/2)2
8(N + 1/2)

and so IN → 0 as N →∞. Again we get ζ(2) = π2/6.

Another textbook proof, found in many books on complex analysis.

Proof 9: We first note that if 0 < x <
π
2 then sin x < x < tan x and so

cot
2 x < x−2 < 1 + cot

2 x. If n and N are natural numbers with 1 ≤ n ≤ N

this implies that

cot
2 nπ

(2N + 1)
<

(2N + 1)
2

n2π2
< 1 + cot

2 nπ

(2N + 1)

and so

π2

(2N + 1)2

N�

n=1

cot
2 nπ

(2N + 1)

<

N�

n=1

1

n2

<
Nπ2

(2N + 1)2
+

π2

(2N + 1)2

N�

n=1

cot
2 nπ

(2N + 1)
.

If

AN =

N�

n=1

cot
2 nπ

(2N + 1)

it suffices to show that limN→∞ AN/N2
=

2
3 .

If 1 ≤ n ≤ N and θ = nπ/(2N + 1), then sin(2N + 1)θ = 0 but sin θ �= 0.

Now sin(2N + 1)θ is the imaginary part of (cos θ + i sin θ)2N+1
, and so

sin(2N + 1)θ

sin
2N+1

θ
=

1

sin
2N+1

θ

N�

k=0

(−1)
k

�
2N + 1

2N − 2k

�
cos

2(N−k)
θ sin

2k+1
θ

=

N�

k=0

(−1)
k

�
2N + 1

2N − 2k

�
cot

2(N−k)
θ

= f(cot
2
θ)
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say, where f(x) = (2N+1)xN−
�
2N+1

3

�
xN−1

+· · ·. Hence the roots of f(x) = 0

are cot
2
(nπ/(2N + 1)) where 1 ≤ n ≤ N and so AN = N(2N − 1)/3. Thus

AN/N2 → 2
3 , as required.

This is an exercise in Apostol’s Mathematical Analysis (Addison-Wesley,

1974).

Proof 10: Given an odd integer n = 2m + 1 it is well known that sin nx =

Fn(sin x) where Fn is a polynomial of degree n. Since the zeros of Fn(y) are

the values sin(jπ/n) (−m ≤ j ≤ m) and limy→0(Fn(y)/y) = n then

Fn(y) = ny

m�

j=1

�
1− y2

sin
2
(jπ/n)

�

and so

sin nx = n sin x

m�

j=1

�
1− sin

2
x

sin
2
(jπ/n)

�
.

Comparing the coefficients of x3
in the MacLaurin expansion of both sides

gives

−n3

6
= −n

6
− n

m�

j=1

1

sin
2
(jπ/n)

and so

1

6
−

m�

j=1

1

n2 sin
2
(jπ/n)

=
1

6n2
.

Fix an integer M and let m > M . Then

1

6
−

M�

j=1

1

n2 sin
2
(jπ/n)

=
1

6n2
+

m�

j=M+1

1

n2 sin
2
(jπ/n)

and using the inequality sin x >
2
πx for 0 < x <

π
2 , we get

0 <
1

6
−

M�

j=1

1

n2 sin
2
(jπ/n)

<
1

6n2
+

m�

j=M+1

1

4j2
.

Letting m tend to infinity now gives

0 ≤ 1

6
−

M�

j=1

1

π2j2
≤

∞�

j=M+1

1

4j2
.
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Hence
∞�

j=1

1

π2j2
=

1

6
.

This comes from a note by Kortram in Mathematics Magazine in 1996.

Proof 11: Consider the integrals

In =

� π/2

0

cos
2n

x dx and Jn =

� π/2

0

x
2
cos

2n
x dx.

By a well-known reduction formula

In =
1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · 2n
π

2
=

(2n)!

4nn!2

π

2
.

If n > 0 then integration by parts gives

In =
�
x cos

2n
x
�π/2

0
+ 2n

� π/2

0

x sin x cos
2n−1

x dx

= n
�
x

2
sin x cos

2n−1
x
�π/2

0

− n

� π/2

0

x
2
(cos

2n
x− (2n− 1) sin

2
x cos

2n−2
x) dx

= n(2n− 1)Jn−1 − 2n
2
Jn.

Hence
(2n)!

4nn!2

π

2
= n(2n− 1)Jn−1 − 2n

2
Jn

and so

π

4n2
=

4
n−1

(n− 1)!
2

(2n− 2)!
Jn−1 −

4
nn!

2

(2n)!
Jn.

Adding this up from n = 1 to N gives

π

4

N�

n=1

1

n2
= J0 −

4
NN !

2

(2N)!
JN .

Since J0 = π3/24 it suffices to show that limN→∞ 4
NN !

2JN/(2N)! = 0. But

the inequality x <
π
2 sin x for 0 < x <

π
2 gives

JN <
π2

4

� π2

0

sin
2
x cos

2N
x dx =

π2

4
(IN − IN+1) =

π2IN

8(N + 1)
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and so

0 <
4

NN !

(2N)!
JN <

π3

16(N + 1)
.

This completes the proof.

This proof is due to Matsuoka (American Mathematical Monthly, 1961).

Proof 12: Consider the well-known identity for the Fejér kernel:

�
sin nx/2

sin x/2

�2

=

n�

k=−n

(n− |k|)eikx
= n + 2

n�

k=1

(n− k) cos kx.

Hence

� π

0

x

�
sin nx/2

sin x/2

�2

dx =
nπ2

2
+ 2

n�

k=1

(n− k)

� π

0

x cos kx dx

=
nπ2

2
− 2

n�

k=1

(n− k)
1− (−1)

k

k2

=
nπ2

2
− 4n

�

1≤k≤n,2�k

1

k2
+ 4

�

1≤k≤n,2�k

1

k

If we let n = 2N with N an integer then

� π

0

x

8N

�
sin Nx

sin x/2

�2

dx =
π2

8
−

N−1�

r=0

1

(2r + 1)2
+ O

�
log N

N

�
.

But since sin
x
2 >

x
π for 0 < x < π then

� π

0

x

8N

�
sin Nx

sin x/2

�2

dx <
π2

8N

� π

0

sin
2
Nx

dx

x

=
π2

8N

� Nπ

0

sin
2
y

dy

y
= O

�
log N

N

�
.

Taking limits as N →∞ gives

π2

8
=

∞�

r=0

1

(2r + 1)2
.

This proof is due to Stark (American Mathematical Monthly, 1969).

Proof 13: We carefully square Gregory’s formula

π

4
=

∞�

n=0

(−1)
n

2n + 1
.
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We can rewrite this as limN→∞ aN =
π
2 where

aN =

N�

n=−N

(−1)
n

2n + 1
.

Let

bN =

N�

n=−N

1

(2n + 1)2
.

By (2) it suffices to show that limN→∞ bN = π2/4, so we shall show that

limN→∞ (a2
N − bN) = 0.

If n �= m then

1

(2n + 1)(2m + 1)
=

1

2(m− n)

�
1

2n + 1
− 1

2m + 1

�

and so

a
2
N − bN =

N�

n=−N

N�

m=−N

�
(−1)

m+n

2(m− n)

�
1

2n + 1
− 1

2m + 1

�

=

N�

n=−N

N�

m=−N

�
(−1)

m+n

(2n + 1)(m− n)

=

N�

n=−N

(−1)
ncn,N

2n + 1

where the dash on the summations means that terms with zero denominators

are omitted, and

cn,N =

N�

m=−N

�
(−1)

m

(m− n)
.

It is easy to see that c−n,N = −cn,N and so c0,N = 0. If n > 0 then

cn,N = (−1)
n+1

N+n�

j=N−n+1

(−1)
j

j

and so |cn,N | ≤ 1/(N − n + 1) as the magnitude of this alternating sum is

not more than that of its first term. Thus

|a2
N − bN | ≤

N�

n=1

�
1

(2n− 1)(N − n + 1)
+

1

(2n + 1)(N − n + 1)

�
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=

N�

n=1

1

2N + 1

�
2

2n− 1
+

1

N − n + 1

�

+

N�

n=1

1

2N + 3

�
2

2n + 1
+

1

N − n + 1

�

≤ 1

2N + 1
(2 + 4 log(2N + 1) + 2 + 2 log(N + 1))

and so a2
N − bN → 0 as N →∞ as required.

This is an exercise in Borwein & Borwein’s Pi and the AGM (Wiley,

1987).

Proof 14: This depends on the formula for the number of representations

of a positive integer as a sum of four squares. Let r(n) be the number of

quadruples (x, y, z, t) of integers such that n = x2
+ y2

+ z2
+ t2. Trivially

r(0) = 1 and it is well known that

r(n) = 8

�

m|n,4�m
m

for n > 0. Let R(N) =
�N

n=0 r(n). It is easy to see that R(N) is asymptotic

to the volume of the 4-dimensional ball of radius
√

N , i.e., R(N) ∼ π2

2 N2
.

But

R(N) = 1 + 8

N�

n=1

�

m|n,4�m
m = 1 + 8

�

m≤N,4�m
m

�
N

m

�
= 1 + 8(θ(N)− 4θ(N/4))

where

θ(x) =

�

m≤x

m

�
x

m

�
.

But

θ(x) =

�

mr≤x

m

=

�

r≤x

�x/r��

m=1

m

=
1

2

�

r≤x

��
x

r

�2
+

�
x

r

��

=
1

2

�

r≤x

�
x2

r2
+ O

�
x

r

��
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=
x2

2
(ζ(2) + O(1/x)) + O(x log x)

=
ζ(2)x2

2
+ O(x log x)

as x →∞. Hence

R(N) ∼ π2

2
N

2 ∼ 4ζ(2)

�
N

2 − N2

4

�

and so ζ(2) = π2/6.

This is an exercise in Hua’s textbook on number theory.
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